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ABSTRACT

The quasistatie method was compared with a direct finite-

difference method of solving two-dimensional,thermal reaeto~

t~ansient problems with thermal-hydraulicfeedback. Calculations

using both metbds Mere perfomed for a eylind~ieal (P-z), D20-

mode~ated and -cooled, uranium-fueled reactor.

This study shous that the quasistatie method is capable of

producing highlg accurate ~esults, relative to the direct finite-

differenee method, for two-dimensional thermal reactor transients

with feedback. The quasistatic method also offe~s the :flexibilit~{

of using larger time steps between flux shape calculations uithout

encountering numerical problems than the direct method. The

quasistatic and direct method codes used in this uork aye eompwable

with respect to accuracy and computing costs except for transients

uith ueak spatial effects. For such t~ansients,much larger time

steps can be used in the quasistatic code than in the direct method

code to achieve a specified accuracy which, in turn, provides a

considerable savings iz computing costs.
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INTRODUCTION

An important aspect in the design and safe operation of

a nuclear reactor is the behavior of a reactor in a transient,

or nonsteady state, condition. The models currently used to

describe the neutronic and thermal-hydraulictransient char-

acteristics of a reactor consist of a rather sophisticated set

of coupled partial differential equations. Conventional direct

finite-differencemethods are usually used to convert the

differential equations to algebraic equations which are amenable

for solution with the aid of a digital computer.

If the differential models involve two or three spatial

dimensions (e.g., r-z or r-z-e), the number of resulting

algebraic equations can be extremely large, involving as many

as a million unknowns. Such large systems of equations result

in long running times and large memory requirements even on the



present generation of computers. in short, multidimensional

reactor transient calculations utilizing the direct finitc-

difference method of solution are quite expensive when performed

on the present generation of computers.

To reduce computing costs without introducing unacceptable

inaccuracies in the solution, more approximate methods of solution

are being developed. One such method,

fast reactors such as the Liquid Metal

the “improved quasistatic” method.l-lo

the quasistatic method is adequate for

developed primarily for

Fast Breeder Reactor is

Although the accuracy of

both fast reactors and

thermal light-water reactors, the accuracy of the method is much

better for fast reactors than for thermal light-water reactors,l-s

Previous work has also indicated that the quasistatic method

could provide a significant savings in computing costs relative

to the direct finite-differencemethod for large two- and three-

dimensional problems, although no definite conclusions could be

drawn because most of the work involved only small one-dimensional

problems, In addition, most of the previous work involving com-

parisons of the quasistatic method with the direct finite-difference

method included only the neutronic models. The thermal-hydraulic

models, commonly referred to as feedback, were not included in the

calculations.

The primary objective of this work is to investigate the

accuracy of the quasistatic method for solving two-dimensional,

thermal (heavy-watertype) reactor transient problems with feed-

back. A secondary objective is to investigate the computing
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efficiency of a computer code which uses the method. The basis

of comparison for both accuracy and computing efficiency is a

code which uses a direct finite-differencemethod of solution.11

Both the quasistatic code and the direct method code used in

this work were developed for use primarily as research tools.lz

THEORETICAL MODEL

The time-dependent,

in two-dimensional (r-z)

multienergy-group

geometry are used

diffusion equations

in this work to describe

the neutronic behavior of a nuclear reactor. In matrix notation,

these equations are

~-1 a
~ g(i,t) = [v”Q(i,t)v - ‘4(i,t) + (1-B)~~T(i,t)] $(i,t) (1)=

M

+
I ~iAICi(Z,t) + ~(;,t)

i=l
and

+i(i,t) = Di~T(;,t)$(Z,t) - AiCi(i,t) i = 1, . . . ,M (2)

where r is the position vector, t is time, and V is the gradient

-1
operator. ~ is a G x G diagonal matrix containing the inverse

velocities for G energy groups. A doubly underlined quantity

denotes G x G square matrix, a singly underlined quantity de-

notes G x 1 matrix, and a scalar is denoted by a quantity with

no underline. @ is the flux vector, : is the diffusion coefficient

(diagonal)matrix, and $ is the removal plus inscatteringmatrix.

B is the delayed neutron fraction,
%

is the prompt neutron fission
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spectrum, and FT denotes the transpose of the production cross section

vector. M denotes the nmber of delayed neutron precursor families,

xi is the delayed neutron fission spectrum, and Ai is the decay constant

for precursor family i. Ci is the precursor density for precursor family

i, S is the external neutron source vector, and Bi is the delayed neu-

tron fraction for precursor family i. ~, ~, and FT are functions
%-

of the thermal-hydraulicstate of the reactor. The thermal-hydraulic

feedback equations in turn depend directly on the flux vector in

Equations 1 and 2. The spatially dependent feedback equations used

in this work describe one- and two-phase flow, primary system pressure,

fuel assembly heat transfer and hydraulics, and external primary coolant

loop.

The quasistatic method is concerned primarily with the treat-

ment of the neutronic equations. The treatment of the feed-

back equations is the same in both the quasistatic and the direct

method. Hence, a detailed discussion of the feedback equations is

not included in this paper.

THE QUASISTATIC METHOD

The fundamental assumption in the quasistatic method is that

the flux vector may be separated into the product of a shape function

that is slowly varying with time, ~(;,t), and a more rapidly varying

amplitude function, T(t), as shown below:

~(i,t) = ~(z,t)T(t) (3)
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where ~(~,t) is normalized such that*

1
F ( )y(i,t),y-ly(i,t) = constant = y (4)

u is a weight functionand P is adjusted so that y = 1 at t = O. _

that is usually selected to be the unperturbed steady state adjoint

solution of Equation 1. Equation 4 determines uniquely the separa-

tion indicated by Equation 3. More importantly, the condition that

y = 1 for all time provides a constraint which must be satisfied

throughout the transient.

The central idea in the quasistatic method is that a low order

approximationwith large integration time steps may be used for the

calculation of ~(~,t); whereas, a high order approximationwith small

integration time steps is used for the calculation of T(t). The

separation indicated by Equation 3 should permit the use of larger

time steps for the calculation of $[~,t) than would be required for

the calculation of $(~,t). Thus, since a very time-consumingportion

of any space-time transient calculation is the spatial calculation at

each time step, a reduction in the co~utation time per transient should

be obtained by

quired for the

the constraint

time should be

using Equation 3 provided the additional computation time re-

calculation of T(t) and also the time required to satisfy

equation are not significant. This reduction in computing

more evident for transients in which the reactor power

is changing rapidly and the spatial flux shape is changing slowly.

*The brackets indicate an inner product defined as
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Substituting Equation 3 into Equations 1 and 2, multiplying by

U(i,t), and integrating over the reactor volume yield, after some re-

arrangement, the following equations:

Bi(t)

~Ci(t) = -T(t) - Aigi(t) i = 1, ... , M

where

E=yP=
( -)
y,y-ly = constant—

Equation 1 may also be expressed as

(5)

(6)

M

i=J,

-6-
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where ~ = ~(;,t) and Ci = Ci(;,t). IntegratingEquation 2 from. .

initial time, tO to t gives

t -ai(t-t’)

Ci(; ,t) = 6. J ~T(i, t’)$(i, t’) e dt‘
1

‘o

-Ai(t-to)

+e Ci(~,to) i = 1,...,M (8)

Thus, instead of solving Equations 1 and 2 directly, the quasistatic

approach is to solve Equations 5-8, along with the constraint equation,

Equation 4. It is important to note that no approximationshave been

made thus far.

Numerical Solution

Equations 4-8 and the feedback

using a hierarchy of four different

shown below:
.

equations are solved numerically

integration time intervals as

— At’

~.i Atk
1 L

TIktE

+ Atj .

1+ At ~1

where Atk~ Atf= AtJc At

The shape function $(~,t) is assumed to vary linearly over the

largest time interval, At, where for the n
th

time interval, At =
n

tn - tn_l” A simple backward difference in time is used to approxi-

mate Equation 7 which gives
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{
-V*QV+ ~ - (1-6)

~T+V-l ldT 1

% [ 1}
$(i,tn)-. = TX+% ~-

n

In concise notation, Equation 9 becomes

(9)

(lo)

where definitions of the operator Q and the driving function Z are

obvious from comparing Equations 9 and 10,

In Equation 8, the fission‘densityFT$ is assumed to vary linearly--

over Atj = tJ _ tjn ~ which gives the following, using @ = VT:
n n- --

(11)

-Ai(tj -
n

e t’)T(t’)dt’

n
ai and by are evaluated simultaneouslywith the solution of Equations

5 and 6 using a fourth order Runge-Kutta approximation over the Atk

time intervals. P, ~, ~j, and A are computed using their inner

product definitions at the t’ time points. Quadratic interpolation

k
is used to obtain intermediate values of the coefficients at the t

time points.
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the

Equation 10 is

use of Equation

solved in a somewhat unusual manner which involves

4. Specifically, expand ~ as 91 - ~2 where

g2=
{
(1 - B)~ET

} t
n

Therefore, Equation 10 becomes

A conventional iterative approach for solving Equation 12 is

[12)

(13)

where E is the iteration index and

$ (l$Q!R) with 1 = (1...1)

‘(=) - T

As discussed by Meneley,6

when using the above procedure

prompt critical. In order to

numerical difficulties are encountered

for transients in the neighborhood of

circumvent this problem, Meneley proposed

the following procedure which utilizes Equation 4.

(14)
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The L iteration in the above procedure results in a converged value

of y and a converged shape function 0. This procedure has been

used successfully in the quasistatic codes developed at SRL.

A general description of the solution algorithm is outlined

below:

1. Assume everything is knom at time tn_l.

2. Extrapolate $ linearly with respect to time from

3. Solve the feedback equations out to t’, using time step

f
size At .

4. Evaluate P, ~, A, and Bi at t; using their inner product

definitions.

5. Interpolate P, ~, A, and ~i between tn ~ and t; at the

tk points.

6. Solve Equation 5 and evaluate a:, by out to t;.

7. Update Ci(~,t) to t = t; using Equation 11.

8, Ift:<t n, go to next t’ point and repeat Steps 3-7.

9. Ift~=t solve Equation 14 for a new v(~,tn)and a new Y.
n’

10. If ynew = 1, go to the next At interval and repeat Steps 2-9.

11, If ynew # 1, replace $(~,tn) with the new ~(;,tn) and repeat

Steps 2-11, omitting Step 3, for the same At interval or a

shorter At interval.

In the next section, results of calculationsusing the quasi-

static method described above are compared with results obtained
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with the direct finite-difference

of the direct method used in this

However, it should be pointed out

method. A detailed description

work is given in Reference 11.

that a fully implicit (i.e.,

backward) difference approximation for the time

flux was used in the direct method calculations

with the treatment of Equations 9 and 10 in the

RESULTS

derivative of the

which is consistent

quasistatic method.

A schematic diagram of the reactor considered in this work is

presented in Figure 1. The reactor is divided into six radial rings

and fourteen axial levels, with three mesh points per ring and two

mesh points per level, to give an 18 x 28 mesh point structure for

the spatial neutronic calculations. Moderator flow and assembly

heat transfer are calculated using a lumped parameter approximation

with lumps defined by the ring-level structure in Figure 1. The

neutronic calculations are performed using two energy groups and

six delayed neutron precursor groups. The neutronic and thermal-

hydraulic constants are representativeof a DzO-moderated and -cooled,

uranium-fueled reactor.

Results for two different transients are presented. The

first transient is initiated by reducing the coolant flow in some

of the assemblies in Ring 1 of the core region (Levels 3-12), The

flow is reduced to zero in three seconds. The reactor is initially

critical and at full power so that the perturbation causes strong

spatial effects [changes in +(;) with respect to time] due to the

production and quenching of steam.
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Transient 2 is initiated by a 12-second Tamp reduction in the

thermal absorption cross section of the core region in Ring 5

(Levels 3-12). The reactor is initially critical but at a very

low power so that Transient 2 resembles a startup accident from low

power. Because of the nature of the perturbation and the startup

from low power, spatial effects are almost insignificant;whereas,

the temporal effect in power is quite rapid,
&

The time step size for the solution of the space-independent

k
equations, At , is 0.005 sec in all of the quasistatic calcula-

tions. A time step size of At
f
= 0.05 sec is used for the solution

of the thermal-hydraulic feedback equations in the calculations by

both methods. The time interval between shape calculations in the

quasistatic method and flux calculations in the direct method (de-

noted by At) is the primary variable of interest and will be defined

for each case that is presented. The time step size AtJ for computing

the inner products P, ~, A, and ~i is also a variable of interest

that is defined for each case.

The power traces for both transients are presented in Figure 2;

the scale on the left is for Transient 1, and the scale on the right,

which is logarithmic, is for Transient 2. The results in Figure 2

were obtained with both methods for a time interval between shape

calculations,At (or flux calculations in the case of the direct

method code) equal to 0.05 sec. In other words the methods give

identical results with At = 0.05 sec. The time step AtJ in the

quasistatic calculation is also equal to 0.05 sec.
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In Table 1, the average percent error in power versus time step

size is presented for Transient 1, the transient with the strong

spatial effects, The spatial effects may be observed in Table 2 in

which values of spatial tilt, where tilt is defined in Figure 3,

are presented at the beginning, the middle, and near the end of the

transient for various values of At. The base case for comparison

purposes in Table 1 is the transient calculated by the direct method

with At = 0.05 sec which has, of course, a O% error. Values for

the time interval between inner product calculations are also pre-

sented for the results obtained with the quasistatic method. As At

increases, the errors increase moderately in both methods and are

approximately equal. Iiowever,the direct method encounters numerical

problems for the case with At = 2 see; whereas, the quasistatic

method does not.

Results for Transient 2, which has negligible spatial effects,

are presented in Tables 3 and 4. As At increases, the errors in the

direct solution for this transient are considerably larger than the

errors in the quasistatic solution which is attributed to the large

truncation error that is associatedwith the time differencing

approximation in the direct method, Whereas, in the quasistatic

method, the truncation error is kept small by using a very small

time step for the amplitude equations. For the cases with At = 2

and 4 sec the direct method encounters numerical problems similar

to the previous transient while the quasistatic method does not en-

counter such problems.

Because the accuracy of the quasistatic solution for Transient 2

-13-



is much less sensitive to the size of the time step than the direct

method solution, one should be able to obtain a considerable savings

in computing cost with the quasistatic code by using larger time steps.

Indeed, this is the case as shown in Figure 4 in which the average

percent error in power for Transient 2 is plotted versus the CPU*

time required by each code. Each data point represents a complete

transient calculationby one code. The scatter in the

data is due to the use of different combinations of At

if an average percent error in power of 5% is desired,

quasistatic

and At’. Thus,

the quasistatic

code will provide the desired accuracy using about 90 CPU seconds;

whereas, the direct method code will use about 440 CPU seconds - a

savings of almost a factor of 5. On the other hand, there are no

significant savings in computing costs for Transient 1 as shown in

Figure 5 because both methods are about equally sensitive to the

time step size due to the strong spatial effects,

CONCLUSIONS

The quasistatic method was compared with a direct finite-

difference method of solving two-dimensional,thermal reactor transient

problems with thermal-hydraulic feedback. Calculations using both

methods were

and -cooled,

performed for a cylindrical (r-z), DzO-moderated

uranium-fueled reactor.

* Central Processing Unit for the IBM 360, Model 195.

-14-



1.

2.

3.

The results of this study support the following conclusions:

The quasistatic method is capable of producing highly accurate

results, relative to the direct finite-differencemethod, for

two-dimensionalthermal reactor transients with feedback.

The quasistatic method offers the flexibility of using larger

time steps between shape calculationswithout encountering

numerical problems than the direct method.

The quasistatic and direct method codes used in this work are

comparable with respect to accuracy and computing costs except

for transients with weak spatial effects. For such transients,

much larger time steps can be used in the quasistatic code than

in the direct method code to achieve a specified accuracy which,

in turn, provides a considerable savings in computing costs.
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TABLE 1

Average Percent Error in Power versus Time Step Size
for Transient 1

At, sec Direct,% Ati,sec Quasistatic,%

0.0s o 0.05 0.62

0.2 3.07 0.05 1.54

0.2 2.89

0.5 3,69 0.05 2.50

0.5 3.22

1.0 5,69 0.05 5.66

1.0 6.27

2.0 a 1.0 8.08

a. Nmerical difficulties encountered.

TABLE 2

Spatial Tilt versus Timea for Transient 1

Direct Quasistati&
At, see t = 14 see t = 27 sec t = 14 sec t = 27 sec

0.05 1.66 0.67 1.64 0.68

1.00 1.74 0.71 1.79 0.70

2.00 4.75 c 1.75 0.79

Att = O, tilt = 0.78.
:: At] = o.05 sec.

c. Numerical difficulties encountered.



TABLE 3

Average Percent Error in Power versus Time Step Size for
Transient 2

At, see Erect, % A@, see Qmsistatic,%

0.05 0 0,05 0.23

0.50 18.80 0.05 0.24

1.00 65,20 0.05 0.49

1.00 3.21

,
2.00 a 0.05 0.62

1.00 2.98

4.00 a 1,00 4.38

a. Numericaldifficultiesencountered.

TABLE 4

Spatial Tilt versus Timea for Transient 2

Direc$ Quasistaticb
At, sec t = 12 sec t = 20 S2C t = 28 see t = 12 sec t = 20 see t = 28 S6;

0,05 0.83 0.83 0.86 0,83 0.83 0.86

1.00 0.83 0,85 0.87 0,83 0.83 0.86

2.00 c c c 0,83 0.83 0.86

4.00 c c c 0,83 0.83 0.86

a. At<t = O, tilt = 0.76.
b. At] = 0.05sec.
c. Numericaldifficultiesencountered.
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